Maps between Jacobians of Modular Curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On maps between modular Jacobians and Jacobians of Shimura curves

Fix a squarefree integer N , divisible by an even number of primes, and let Γ be a congruence subgroup of level M , where M is prime to N . For each D dividing N and divisible by an even number of primes, the Shimura curve X(Γ0(N/D)∩Γ ) associated to the indefinite quaternion algebra of discriminant D and Γ0(N/D) ∩ Γ -level structure is well defined, and we can consider its Jacobian J(Γ0(N/D) ∩...

متن کامل

On Relations between Jacobians of Certain Modular Curves

We confirm a conjecture of Merel describing a certain relation between the jacobians of various quotients of X(p) in terms of specific correspondences.

متن کامل

Endomorphisms of Jacobians of Modular Curves

Let XΓ = Γ\H∗ be the modular curve associated to a congruence subgroup Γ of level N with Γ1(N) ≤ Γ ≤ Γ0(N), and let X = XΓ,Q be its canonical model over Q. The main aim of this paper is to show that the endomorphism algebra End0Q(JX) of its Jacobian JX/Q is generated by the Hecke operators Tp, with p N , together with the “degeneracy operators” DM,d, D t M,d, for dM |N . This uses the fundament...

متن کامل

On Component Groups of Jacobians of Drinfeld Modular Curves

Assume N is prime, so X0(N)Q has two cusps; these are labelled 0 and ∞. The two cusps are Q-rational points on X0(N)Q and the divisor (0) − (∞) on X0(N)Q generates a finite cyclic subgroup C in J0(N)(Q) called the cuspidal divisor group. Denote by C/Z the finite flat subgroup scheme of J generated by C ⊂ J0(N)(Q). Let C be the FN -valued points of CZ (“the specialization” of C in J × FN ). It i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1997

ISSN: 0022-314X

DOI: 10.1006/jnth.1997.2028